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Abstract

Schizophrenia, autism and depression do not inherit by Mendel’s law, and the search for a genetic basis seems unsuccessful.

Schizophrenia and autism relate to low birth weight and pregnancy complications, which are associated with developmental adaptations by

bprogrammingQ. Epigenetics might constitute the basis of programming and depend on folate status and one-carbon metabolism in general.

Early folate status of patients with schizophrenia might be compromised as suggested by (i) coinciding incidences of schizophrenia and

neural tube defects (NTDs) in the Dutch hunger winter, (ii) coinciding seasonal fluctuations in birth of patients with schizophrenia and NTDs,

(iii) higher schizophrenia incidence in immigrants and (iv) higher incidence in methylene tetrahydrofolate reductase 677CYT homozygotes.

Recent studies in schizophrenia and autism point at epigenetic silencing of critical genes or chromosomal loci. The long-chain

polyunsaturated fatty acids (LCPUFA), arachidonic acid (AA, from meat) and docosahexaenoic acid (fish) are components of brain

phospholipids and modulators of signal transduction and gene expression. Patients with schizophrenia and, possibly, autism exhibit abnormal

phospholipid metabolism that might cause local AA depletion and impaired eicosanoid-mediated signal transduction. National fish intakes

relate inversely with major and postpartum depressions. Five out of six randomized controlled trials with eicosapentaenoic acid (fish) have

shown positive effects in schizophrenia, and 4 of 6 were favorable in depression and bipolar disorders. We conclude that folate and LCPUFA

might be important in both the etiology and severity of at least some psychiatric diseases.

D 2006 Elsevier Inc. All rights reserved.

Keywords: Schizophrenia; Autism; Depression; Folate; One-carbon metabolism; Long chain polyunsaturated fatty acids; Epigenetics
1. Introduction

The stable cross-cultural and cross-racial incidence of

schizophrenia, initially noticed by the World Health Organi-

zation (WHO) in 1970, suggests that schizophrenia suscep-

tibility genes have been with us since the origin of Homo

sapiens some 160000 years ago. This, together with the

lower fecundity of, notably male, schizophrenics raises the

question why the disease has survived natural selection [1,2].

Family studies of schizophrenics indicate that schizophrenia

is rarely the only psychiatric illness, but that there is a

continuum of disorders that is likely to derive from the

combination of a small number of susceptibility genes, with

intermediate outcomes such as bschizotypy,Q depression,
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bipolar disorders, sociopathy and learning disabilities

(including dyslexia). These genes might have been conserved

during evolution because they actually code for exceptional

creativity and intelligence. There is a long list of famous

musicians, writers, philosophers, scientists and inventors

with schizophrenic or schizotypal characteristics [2]. Our

rapidly changing lifestyle, beginning with the agricultural

revolution (commencing some 10000 years ago), and its

acceleration since the industrial revolution (beginning some

200 years ago) might have turned this badvantageous
genotypeQ into a disadvantage. TheWHOpredicts psychiatric

disease, notably depression, to be ranking in the top of

chronic diseases in Western countries in the near future. The

present consensus is that the prevalence of autism exhibits an

increase that is unlikely to be explained by changes in

diagnostic criteria or improvements in case ascertainment. It

is, e.g., estimated that the prevalence in the United States has

shown a N10-fold increase in the past decades, with b3 cases

per 10000 children in the 1970s to N30 per 10000 in the

1990s [3].
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The rapidly increasing incidence, and perhaps severity, of

some psychiatric diseases suggests that, analogous to other

typically Western diseases such as coronary artery disease,

diabetes mellitus type 2 and some cancers (e.g., prostate,

breast, colon, or lung), we are dealing with a conflict

between our contemporary lifestyle and our slowly adapting

genome. We review the currently available data in support

of the hypothesis that (early) environmental factors, notably

those of nutritional nature, play an important role in the

etiology and severity of at least some psychiatric diseases.

Emphasis is laid on the role of folate and long-chain

polyunsaturated fatty acids (LCPUFA) in the etiologies of

schizophrenia and autism and the role of dietary folate and

LCPUFA in the severity of schizophrenia and depression.
2. Influence of genetics, birth weight and pregnancy

complications

Psychiatric diseases, such as schizophrenia (1% of

population) and autism (0.1% of children), are among the

bcomplexQ diseases that, by definition, do not inherit by

Mendel’s law. They are generally considered to derive from

a combination of heritable and environmental factors.

Currently, autism holds a respectable list of over 89 candi-

date genes, provoking the comment that bas of this date, no
gene has been proven to not be an autism disease geneQ [4].
Also, the list of schizophrenia candidate genes is on steady

growth, while genes alone cannot explain the 2.7 times

higher schizophrenia relative risk of first generation

migrants and the 4.5 times higher relative risk of second

generation migrants, which notably affect subjects migrating

from the developing to developed countries [5].

The higher concordance of monozygotic twins for

schizophrenia (about 50%; [6]) and, notably, autism

(60–90%; [7]), as compared with dizygotic twins (schizo-

phrenia: 17%; autism: 0–10%), seems to argue in favor of

the importance of genetic factors. Twin studies in support of

a genetic background have, however, been seriously

criticized because of methodological problems and ques-

tionable assumptions [8]. Taking chorionicity into account,

it was found that simple monozygotic concordance rates

may overestimate schizophrenia heritability, with low birth

weight and notably bprogrammingQ probably being of more

importance [9,10].

Birth weight has only a small genetic component and

reflects mainly the quality of the intrauterine environment

[11]. Small and disproportionate babies derive from a

dysbalance between fetal nutrient demand and maternopla-

cental nutrient supply in early and late gestation, respec-

tively, causing what is named the bthrifty phenotypeQ [12].
The underlying process of programming stems from a

stimulus or an insult at a sensitive or critical period of

development with long-term consequences. Programming is

a well-known phenomenon in biology. The underlying

mechanism contributes to bdevelopmental plasticityQ [13].

Its occurrence is not limited to an adverse environment in
intrauterine life that stems from under or malnutrition, but it

may also be triggered by infection, season of birth and

smoking, or adverse environmental conditions in early

infancy. By down-regulation of growth and the induction

of other developmental adaptations, it is now presumed to

affect many tissues, organs and systems, including the

central nervous system. Such adaptations may be beneficial

for short-term survival but are, in the long-term, notably

when stimulated by unfavorable postnatal lifestyle, impli-

cated in a number of chronic noncommunicable diseases at

adult age, including schizophrenia [12,14]. A recent study

showed that at adolescent age, very-low-birth-weight babies

are at risk for developing psychiatric symptoms and reduced

social and academic skills, while term small-for-gestational-

age babies have higher risk of emotional, behavioral and

attention deficit symptoms [15]. A study of perinatal risk

factors for autism among cases, unaffected siblings and

controls in W-Australia concluded that we might be dealing

with genetic factors that predispose to obstetric complica-

tions and that these factors may precipitate to autism by

exposure to certain environmental stimuli [16]. Similar

perinatal risk factors, including low birth weight, but also

parental psychiatric history, were reported in another recent

autism case-control study [17]. A meta-analysis of prospec-

tive population-based studies revealed that schizophrenia is

associated with complications of pregnancy as well [18].

Taken together, the available data suggest that birth

weight, pregnancy complications and parental psychiatric

history might be important to the development of at least

some psychiatric diseases. The plausibility of causality

would, however, benefit greatly from the identification of

the offending environmental factors and the elucidation of

the underlying pathophysiological mechanism(s). Recent

developments have shed more light into these issues.
3. Nutritional factors in the etiology and severity of

psychiatric disease

Indications in favor of nutritional factors in prenatal life

as causative factors in psychiatric disease derive from the

two times higher incidence of schizophrenia in the Dutch

offspring cohort that was conceived in the last month of the

1944–1945 Dutch hunger winter [19]. The schizophrenia

incidence in this cohort coincided with a 2.5 times higher

incidence of neural tube defects (NTDs), which suggests

involvement of low folate status. The approximately two

times higher schizophrenia relative risk associated with

maternal undernutrition was recently confirmed in a study of

the massive 1959–1961 famine in China [20]. Folate

involvement is further strengthened by the demonstration

of coinciding seasonal fluctuations in birth incidence of

patients with NTDs and schizophrenia, with both disorders

exhibiting highest conception rates in May–June [21]. A

third indication of folate involvement may come from the

study of immigrant populations. Immigrants are less likely

to use folic acid supplements preconceptionally and in the
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first trimester [22–25], and they also have higher NTD rates

[23]. Both of these seem to relate to the alarmingly higher

incidence of schizophrenia in the second-generation off-

spring [5]. A recent metastudy of 2265 schizophrenia cases

and 2721 controls revealed that the homozygous methylene

tetrahydrofolate reductase (MTHFR) 677CYT variant is

characterized by a 1.36 (1.07–1.72) higher odds ratio for

schizophrenia, as compared with the wild-type CC [26].

MTHFR TT homozygotes are in need of higher folate status

for similar MTHFR functioning, compared with CT and CC

counterparts, because of the thermolability and reduced

activity of the MTHFR 677CYT enzyme [27]. Finally,

Moretti et al. [28] reported on a 6-year-old girl with cerebral

folate deficiency, developmental delay, psychomotor regres-

sion, seizures, mental retardation and autistic features, who,

after one year of folinic acid supplementation, responded

favorably with regard to neurological development to

exhibit bclassicQ autistic features. Other indications in favor

of nutritional imperfections in pregnancy and early postnatal

nutritional status derive from the association between short

birth intervals and schizophrenia in the offspring [29] and

the association of schizophrenia with the total number of

siblings per household during childhood [30].

Patients with schizophrenia living in bdeveloping
countriesQ have consistently been found to have a differen-

tial advantage in course and outcome of the disease, which

is probably on account of environmental factors and,

notably, diet [31]. Schizophrenia runs a more severe course

in countries with a relatively high saturated fat intake and

low unsaturated fat intake [2,32]. Many studies of patients

with schizophrenia have shown low circulating folate and

mildly increased homocysteine [33–36] and, occasionally

strongly, impaired LCPUFA status, including N3LCPUFA
status [37,38]. Serum folate concentrations in patients with

schizophrenia correlate inversely with the severity of

negative symptoms [34], while a randomized controlled

trial with methylfolate in patients with major depression or

schizophrenia improved both clinical and social recovery

[39]. The picture emerges that low folate status or, possibly,

abnormal one-carbon metabolism, in general, and low

polyunsaturated fatty acid status might be among the

offending factors that are involved in both the etiology

and the severity of at least some psychiatric diseases.
4. Folate, one-carbon metabolism and epigenetics

Epigenetics refers to modifications in gene expression

that do not entail a change of DNA sequence. The discipline

studies heritable, but potentially reversible, changes in gene

expression by DNA methylation and alterations of chroma-

tin structure [40–44]. DNA methylation makes use of

S-adenosylmethionine (SAM) as a substrate. SAM is the

methyldonor of over 80 methylation reactions known to

date, and many micronutrients, including those in the folate

cycle, are indirectly involved in its synthesis from the

essential amino acid methionine (Fig. 1). SAM-substrated
DNA methylation by DNA methyltransferases is predom-

inantly directed at CpG dinucleotides, in which the cytosine

is converted to 5-methylcytosine. These CpGs tend to occur

in bislandsQ that are abundant in promoter regions of genes

that are regulated in their expression by methylation.

Epigenetic modification of chromatin structure occurs by

SAM-substrated methylation of histones and also by their

acetylation, phosphorylation and ubiquitylation. Different

phenotypic characteristics of somatic cells within a single

organism provide a lively example of the biological

importance of the resulting bepigenotypeQ of which much

is based on gene-silencing by DNA methylation, or,

alternatively, on gene activation through methylation of

suppressor genes. Most somatic cells are, in this manner,

blockedQ into specific patterns of gene expression, which

provides the basis of cell differentiation and thereby the

typical characteristics of, e.g., a hepatocyte or neuron.

Analogous to the memory contained within a liver cell that

it is to remain a liver cell even after mitosis, it has been

suggested that synaptic input or other environmental stimuli

lead to epigenetic changes that are at the basis of synaptic

plasticity and, thereby, the formation of long-term memory

and adjustment of neural functioning [45].

It has, for long, been believed that epigenetic modifica-

tions that are acquired during the life of an animal are erased

during gametogenesis (i.e., meiosis) to restore the totipo-

tency of the fertilized egg and that these modifications can

therefore not be transmitted to the next generation. This

proved, however, incorrect for at least some mammalian

alleles (so-called metastable epialleles), and it is now clear

that through this mechanism, phenotype can be inherited by

events that are mostly considered stochastic in nature.

Transgenerational inheritance of the epigenetic state con-

served in meiosis is distinct from parental imprinting and

from epigenetic maintenance during mitosis. Following

erasure of epigenetic marks during meiosis, parental

imprinting entails epigenetic silencing of an allele according

to the sex of the animal. It causes bparent-of-origin specific

effectsQ that derive from monoallelic expression in somatic

cells of the offspring and in which the epigenetically

inactivated gene may derive either from the mother or

father. Mitotic epigenetic maintenance, on the other hand,

refers to the propagation of the epigenetic state during cell

division. The fidelity of DNA methylation maintenance in

dividing cultured mammalian cells amounts to 97–99.9%

per mitosis, whereas the de novo methylation amounts to

3–5% per mitosis [43]. The changes in the epigenome

following mitosis, driven by (e.g., hormone-initiated)

developmental programs of cell and tissue differentiation,

aging, microenvironment but also stochastic events, may

induce further variation in the ultimate phenotypic charac-

teristics. It has, e.g., recently been established that with

advancing age, monozygous twins may exhibit deviant gene

activities that trace down to epigenotypic differences [46].

Phenotypic adjustment by epigenetic modification, together

with long-term adjustment of DNA base-sequence by
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mutation and short-term adjustment by interaction with the

environment through transcription factors, is at the center of

our ability to adapt to the bconditions of existenceQ which,
on its turn, constitutes the major driving force of evolution.

Any change of environment (e.g., current lifestyle) beyond

the flexibility of base-sequence, epigenetics or physiological

interaction with nuclear transcription factors, puts us at risk

of disease development.

Epigenetic deregulated (otherwise perfectly normal)

genes, or combinations of these with disease susceptibility

genes, are more likely to be at the basis of complex diseases

than gene mutations or polymorphisms per se. Epigenetic

deregulation may notably account for the incomplete

penetrance, such as encountered in autism and schizophre-

nia. Parent of origin-specific gene regulation by imprinting

and triggers like gender (i.e. hormones) and endocrine

rearrangements during life, may unfavorably affect epige-

netic status and thereby explain [40,44] the relation of

complex diseases with low birth weight and obstetric

complications (autism and schizophrenia), gender inequality

(male/female=4 in autism), as well as the late onset, the

peak periods of onset during life and the fluctuating course

of psychosis in schizophrenia [43]. Parent-of-origin im-

printing and hormones are well known factors to affect

epigenetic status, but nutrition also proved intimately

involved in epigenetic status and its heritability. The latter

was elegantly demonstrated by Waterland and Jirtle [47,48]

who studied the influence of bmethylation dietsQ on

phenotype. They supplemented female mice with extra folic

acid, vitamin B12, choline and betaine (see Fig. 1) from

2 weeks prior to conception until weaning to show

augmented methylation of a retroviral element within the

so-called bagouti-geneQ, which is a gene that determines the

color of their coat. The intervention (partially) silenced

the agouti-gene by methylation and thereby caused the coat
Fig. 1. One-carbon metabolism and its immediately surrounding metabolic pathw

cycle (top middle), the transsulphuration pathway and its connection with cyst

homocysteine regeneration pathway (top right) and the choline–betaine connection

top middle to bottom). One-carbon metabolism might play an important role in epi

change of DNA base sequence. Epigenetics studies heritable, but potentially rever

chromatin structure. DNA methylation occurs by SAM-substrated methylation

methyltransferases. Dysbalances in one-carbon metabolism may cause altered stat

are connected with developmental plasticity and that, at later life, are associated

psychiatric disease. 10f-THF, 10-formyltetrahydrofolate; 5,10-CH_THF, 5,10-m

5mTHF, 5-methyltetrahydrofolate; AICAR, aminoamidazolecarboxamide ribotide;

B2 (flavin adenine dinucleotide); B12, vitamin B12 (methylcobalamin) (1+ and 2+

homocysteine methyltransferase; CBS, cystathionine h-synthase; CDP, cytidine dip
1,2-diacylglycerol cholinephosphotransferase; CT, CTP-phosphocholine cytidylyl

ylated S-adenosyl methionine; DHF, dihydrofolate; DHFR, dihydrofolate reductas

2’deoxyuridine monophosphate; FAD(H2), oxidized (reduced) flavin adenine dinu

leaves the cell, respectively; FTD, 10-formyltetrahydrofolate dehydrogenase; F

glutamine; Glu-Cys, glutamylcysteine; Gly, glycine; GSH, reduced glutathione

synthase; MTCH, 5,10-methylenetetrahydrofolate cyclohydrolase; MTD, 5,10-me

DNA methyltransferases); MTRR, methionine synthase reductase; NADP(H),

nonenzymatic interconversion of THF and 5,10-CH2-THF; PC, phosphatidylc

N-methyltransferase; PGA, pteroyl-l-glutamic acid (folic acid); PGT, pho

phosphatidylserine decarboxylase; PSS1 and 2, phosphatidylserine synthase; ROO
color of the offspring to shift permanently from yellow into

the brownish (pseudo-agouti) phenotype, while there was

also evidence of transgenerational transmission. Another

study emphasized the importance of homocysteine and

S-adenosylhomocysteine (SAH). These are products of

SAM methylation (Fig. 1) and SAH is a potent inhibitor

of methyltransferases. In this study, Friso et al. [49,50]

showed that genomic DNA methylation correlates directly

with folate status and inversely with levels of plasma

homocysteine. The study group was a mixed population of

patients with and without coronary artery disease and,

consistent with MTHFR activity, the encountered associa-

tion of global DNA methylation with folate tracked down to

lower DNA methylation in MTHFR 677CYT homozygotes

with low folate status [49]. Their results suggest that

interaction between nutritional status and genetic polymor-

phism has the potential to modulate gene expression through

DNA methylation [49,50]. A study of Ingrosso et al. [51]

with hyperhomocysteinemic patients on hemodialysis

revealed global and locus-specific DNA hypomethylation,

which was probably mediated by the associated increase of

the methyltransferase inhibitor SAH. Importantly, subse-

quent folic acid supplementation augmented both global and

locus-specific DNA-methylation, as derived from the switch

from abnormal biallelic expression to normal monoallelic

expression for a number of genes with known sensitivity to

methylation. The study showed that folate status affects the

expression of sex-linked and imprinted genes, which are

both characterized by the expression of specific alleles, and

that these effects are not limited to early life. A recent study

of Lillycrop et al. [52] showed that dietary protein

restriction of pregnant rats, a well known model that

reduces fetal growth, causes lower methylation status and

activation of the genes for the glucocorticoid receptor and

peroxisome proliferator-activated receptor (PPAR)-alpha in
ays. Indicated are the folate cycle (top left), the methionine–homocysteine

athionine/glutathione synthesis (middle and middle-bottom), the betaine–

with phospholipid synthesis and phospholipid interconversion (top right and

genetics, which refers to modification of gene expression that do not entail a

sible, changes in gene expression by DNA methylation and/or alteration o

of cytosine bases in notably CpG sequences and is catalyzed by DNA

es of DNA methylation and, thereby, phenotypic changes that, in early life

with complex diseases, including cardiovascular disease, some cancers and

ethenyltetrahydrofolate; 5,10-CH2-THF, 5,10-methylenetetrahydrofolate

AICART, aminoimidazolecarboxamide ribotide transformylase; B2, vitamin

refer to oxidation state of cobalt atom); B6, vitamin B6; BHMT, betaine

hosphate; Chol ox, choline oxidase; CK, choline kinase; CPT, CDP-choline

transferase; Cys, cysteine; Cys-Gly, cysteinylglycine; decSAM, decarbox
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the livers of their offspring. These receptors are important in

embryogenesis and in postnatal blood pressure and meta-

bolic control and are among the many candidates to be

involved in fetal programming. The observed changes

proved persistent up to at least 6 days after weaning and

could be prevented by fortification of the protein-restricted

diet with folic acid. The study showed that abnormal

‘methyl’ status of specific genes in specific tissues, as

induced by an unbalanced diet, might be at the basis of

phenotypic changes in early development [52]. Other causes

may be reduced uterine blood flow, maternal postnatal

behavior and social interaction [53]. The altered epigeno-

type might persist throughout the life span, passed on to the

next generation, and one-carbon metabolism might be

central from a mechanistic perspective.

There is as yet no solid evidence of epigenetic factors in

schizophrenia. The disease has, however, been linked to

prenatal deficiencies of folate (see above), vitamin B6 and

vitamin B12 [29], which are micronutrients that are either

directly or indirectly involved in one-carbon metabolism

and, thereby, in gene expression and repression through

methylation (Fig. 1). Petronis et al. [54] conducted a pilot

study on the epigenetic status of the 5V-regulatory region of

the dopamine D2 receptor gene (DRD2). DRD2 has been

listed as a candidate gene for schizophrenia susceptibility,

and DRD2 antagonism is common to all antipsychotics.

They studied two pairs of monozygous twins, one concor-

dant and one discordant for schizophrenia. It appeared that

the affected twin from the pair discordant for schizophrenia

was epigenetically bcloserQ to the affected concordant twins

than to his unaffected monozygous cotwin, suggesting that

schizophrenic patients have similar epigenetic status of

DRD2. Schizophrenia symptomatology is already, for some

time, known to become exacerbated by high doses of

methionine (Fig. 1) [55]. Mice receiving prolonged treat-

ment with methionine exhibit behavior patterns that mimic

specific phenotypic aspects of schizophrenia, and this

coincides with augmented brain contents of SAM, hyper-

methylation of the reelin promoter and down-regulated

expression of both reelin and glutamic acid decarboxylase

(GAD67). Both reelin and GAD67 carry CpG islands in their

promoter regions, and the degree of reelin methylation in

this region correlates inversely with reelin expression

[56,57]. The reelin protein is necessary for neuronal

migration, axonal branching, synaptogenesis and cell

signaling, while GAD67 is one of the two isoenzymes that

synthesize the neurotransmitter gamma-aminobutyric acid.

Several studies have shown reduced reelin mRNA and

protein levels in postmortem brains of patients with

schizophrenia and also in patients with bipolar disorders

[58]. Recent studies of postmortem brains of schizophrenic

patients and controls revealed reelin gene promoter hyper-

methylation and down-regulation of reelin and GAD67

expression, suggesting an epigenetic basis for their hypo-

activity in schizophrenia [58–60]. Also, postmortem brains

of autistic patients contain low levels of the reelin mRNA
and protein which, together with some other anomalies,

suggest impairment of the reelin signaling pathway in

autism as well [61]. Iwamoto et al. [62] reported a tendency

towards a highly methylated state of the CpG island of the

SOX-10 gene in the brains of patients with schizophrenia.

The SOX-10 gene codes for an oligodendrocyte-specific

transcription factor, and it was found that the percentage

methylated allele correlated inversely with relative SOX-10

expression. Catechol-O-methyltransferase (COMT) is a

strong candidate in the etiology of schizophrenia. Methyl-

ation of the promoter of soluble COMT in the brain of

patients with schizophrenia was ruled out as a common

cause, but one patient with extreme negative symptoms

showed the unique feature of full methylation of the 23rd

cytosine [63]. James et al. [64] reported on 20 children with

autism and 33 controls in which they studied the plasma

concentrations of several metabolites in the methionine

transmethylation and transsulfuration pathways (Fig. 1). In

autism, they found higher SAH, adenosine and oxidized

glutathione (GSSG) in conjunction with lower methionine,

SAM, SAM/SAH ratio, homocysteine, cystathionine, cys-

teine, total glutathione and total glutathione/GSSG ratio.

This profile is consistent with lower methylation capacity

(i.e., lower SAM/SAH ratio) and increased oxidative stress

(relatively increased GSSG) and proved correctable by

supplementation with folinic acid, betaine and methylcoba-

lamin. A recent study by Lamb et al. [65] identified two

discrete loci underlying linkage of autism to chromosome 7

with possible parent-of-origin specific effects and a role of

(an) imprinted gene(s). The involvement of epigenetic rather

than genetic variation might explain the lack of causative

base-sequence variants so far identified in candidate genes

in these regions. It may be concluded that the number of

studies on the epigenetic basis of psychiatric disease and the

number of investigated patients is, as yet, small. Multiple

genes might be involved, given the possible heterogeneity

of what is presently considered to be single disease entity

and given a possible multihit etiology that starts in the

maternal uterus or perhaps even prior to conception up to

oogenesis in the grandmaternal womb.
5. Long chain polyunsaturated fatty acids and brain

development

Low status of LCPUFA (z20 carbon atoms and z3

methylene-interrupted cis double bonds) may play a role as

one of the offending factors in both the etiology of

psychiatric disease and its severity. LCPUFA are either of

the N6 or N3 series. Qualitatively and quantitatively

important LCPUFA are arachidonic acid (AA, an

N6LCPUFA notably from meat), eicosapentaenoic acid

(EPA) and docosahexaenoic acid (DHA) (both N3LCPUFA
from fish) [66,67]. They derive from the parent essential

fatty acids (EFA) linoleic and alpha-linolenic acids, and

some of the C20 members (i.e. AA, EPA and dihomo-

gamma-linolenic acid) are precursors to eicosanoids (pros-



F.A.J. Muskiet, R.F.J. Kemperman / Journal of Nutritional Biochemistry 17 (2006) 717–727 723
taglandins, thromboxanes, and leukotrienes). LCPUFAs are

building blocks of membrane phospholipids of all cells, in

which they contribute to the physical properties of the

membrane and to (synaptic) signal transduction. EFAs make

up 20% of brain dry weight, including about 6% for AA and

8% for DHA. DHA and AA are determinants of membrane

fluidity, which is important for the efficacy of neurotrans-

mitter-receptor interaction and transporters. AA is of special

importance as a second messenger in signal transduction

[68]. DHA is the major structural lipid of the retinal

photoreceptor outer segment membrane, where its fluidity is

essential to accommodate the extremely rapid conforma-

tional changes of rhodopsine [68]. Both AA and DHA are

important to maintain a healthy endothelium of our

cardiovascular system [69,70], of which the brain is

obviously dependent for adequate nourishment. LCPUFA

synthesis from the parent precursors may be subject to

programming that affects the vascular endothelium. A high-

saturated-fat diet given to pregnant rats caused reduced AA

and DHA and increased linoleic and alpha-linolenic acids in

the aorta of their offspring, suggesting poor conversion of

precursor EFA to LCPUFA. These abnormalities coincided

with vascular dysfunction and persisted to adulthood [71].

LCPUFA are not only important membrane structural

elements, but, together with their eicosanoid products, they

are also firmly implicated in gene expression. For example,

dietary LCPUFA are ligands to PPARs and suppress the

expression of sterol regulatory element binding proteins.

These are nuclear transcription factors that can be consid-

ered as main switches in the coordinated expression and

repression of a variety of (key) enzymes in intermediary

metabolism, thermoregulation, energy partitioning, growth

and differentiation and inflammatory responses [72–75].

bNutrigenomicsQ studies in rats revealed that N3LCPUFA
(i.e., notably EPA and DHA) modulate the expression and

repression in brain of a sizeable number of genes that are

involved in structure, energy metabolism, neurotransmis-

sion, signal transduction and regulation [76,77]. Dietary

LCPUFA also influence neurotransmitter physiology.

Experiments with rats showed that fish oil supplementation

influences several neurochemical and behavioral features of

monoaminergic function, causing a 40% higher dopamine

content in the frontal cortex, a reduction of monoamineox-

idase-B activity, greater binding to DRD2 and 25% lower

ambulatory activity as compared to controls [78].

LCPUFA-rich fresh- and salt-water shoreline-based diets

are likely to have been at the basis of our larger and more

sophisticated brains, compared with other primates. A

constant dietary LCPUFA supply and notably that of

DHA might therefore be important [79–87]. DHA might

at least be conditionally essential, since we have limited

ability for its synthesis from the parent essential fatty acid

alpha-linolenic acid [88–91]. Higher dietary DHA intake

may on its turn require higher AA intake to prevent

competition between N3LCPUFA and N6LCPUFA, while
alpha-linolenic acid has an independent role as a precursor
to cholesterol synthesis in brain [92]. This lays emphasis on

a dietary N3/N6 balance [66,67,93,94], a balance that, since

the industrial revolution, has increasingly become violated

in favor of higher intake of N6 fatty acids (notably linoleic

acid), decreasing intake of N3 fatty acids and increasing

intake of saturated and trans fatty acids [94]. Deficiency of

N3 fatty acids in primates is, amongst other conditions,

associated with psychiatric pathology [95] and with reduced

learning, abnormal electroretinograms and visual impair-

ment in humans [96]. AA and DHA status in preterm babies

is related to birth weight, head circumference and length at

birth [97–100], and both AA and DHA may be protective

against the central nervous, visual and auditory damage that

is typical for (very) premature babies [101]. Various studies

have shown suboptimal neurodevelopment of both preterm

and term babies receiving infant formulas without LCPUFA,

although many of these effects might be transient

[102–108]. It is clear that LCPUFA have important

functions in brain and that notably the low N3LCPUFA
status of the contemporary Western diet might put us at risk

of suboptimal brain development and functioning.
6. Schizophrenia-phospholipid hypothesis

There are (anecdotic) reports that (i) feverish illness in

schizophrenics ameliorates their psychiatric symptoms, (ii)

schizophrenics rarely suffer from rheumatoid arthritis

(suggesting a generalized reduced inflammatory response),

(iii) schizophrenic patients are less capable of producing the

typical (prostaglandin-induced) cutaneous flush that follows

nicotinic acid ingestion or topical application and (iv)

schizophrenia in developing countries with higher LCPUFA

intakes runs a less severe course [2,31,32,109]. Horrobin [2]

linked these observations to develop the so-called phospho-

lipid hypothesis that states that schizophrenia is a systemic

disease with a central theme of impaired AA release and

consequently insufficient production of its eicosanoid

metabolites to support adequate signal transduction [110].

In other words, we are possibly dealing with a genetically

determined generalized babnormalityQ of phospholipid

metabolism that might be sensitive to prevention or

correction by nutritional factors. These nutritional factors

are likely to be LCPUFA, of which the intake has been

subject to tremendous decline since the industrial revolu-

tion. Lower contemporary intake in Western countries is,

e.g., suggested by the relatively high AA and DHA status of

Tanzanian women who consume an AA and DHA-rich,

fresh water fish-based diet that (in this respect) is likely to

be close to our ancient diet [111]. It is possible that the

genetic makeup of patients with schizophrenia would, in the

past, not have precipitated to disease and that the LCPUFA-

rich diet of our ancestors enabled them to take full

evolutionary advantage of the associated intelligence and

creativity [2].

Consistent with the increased LCPUFA losses postulated

by the phospholipid hypothesis, both patients with schizo-
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phrenia [32,112] and autism [113] have increased activity of

phospholipase A2, which releases AA from membrane

phospholipids (a process vital to brain cell signaling), while

their LCPUFA in erythrocytes appear more sensitive to

oxidative stress in vitro [113,114]. Brain magnetic reso-

nance spectroscopy studies in schizophrenics showed signs

of increased phospholipid turnover, electroretinograms of

patients with schizophrenia are abnormal (suggesting low

retinal DHA content) and incorporation of AA into

phospholipids seems to occur with difficulty [2]. Taken

together, these data suggest local AA depletion and

insufficient synthesis of AA-derived eicosanoids, which

becomes, e.g., noticeable by amelioration of psychiatric

symptoms by fever-associated eicosanoid release, pain

resistance by eicosanoid shortage at basal conditions and

poor ability to exhibit an eicosanoid-induced flush upon

nicotinic acid treatment. Das [115] hypothesized that

perinatal supplementation of LCPUFA, especially EPA

and DHA, may prevent schizophrenia in the adult. He

considers schizophrenia to be a low-grade systemic inflam-

matory disease with origins in the perinatal period, probably

triggered by maternal infection in a genetically susceptible

individual that leads to excess production of proinflamma-

tory cytokines both in the mother and fetus. The infection

compromises LCPUFA status with devastating neurodeve-

lopmental effects that should theoretically be favorably

responsive to augmented LCPUFA status.
7. Fish oil, schizophrenia and depression

Low intake of the fish oil fatty acids EPA and DHA is

implicated in the high incidence of depression in Western

countries. The incidence of depression has increased

markedly in recent decades [116], and there is a strong

inverse correlation between national dietary fish intakes and

rates of major and postpartum depressions [117,118].

Depressive symptoms are more likely to be encountered in

infrequent fish consumers, and EPA and DHA status is low

in depressive patients. There are also close relationships

between fish consumption and the incidence of cardiovas-

cular disease and depression, which fuelled the suggestion

that depression should be included into the cluster of

diseases that are associated with the metabolic syndrome

[32]. Data from the United Kingdom show that the peak age

of schizophrenia onset (i.e., 19–24 years) coincides with the

highest intake of burgers (i.e., saturated fat) and full-sugar

carbonated drinks and the lowest intake of oily fish [119]. A

meta-analysis of dietary patterns in various countries linked

the intake of refined sugar and dairy products to a worse

2-year outcome of schizophrenia, while a high national

prevalence of depression became predicted from low intake

of fish and seafood [120]. These data demonstrate that there

are basically no differences between dietary risk factors for

poor mental health, cardiovascular disease and some

cancers. Five out of six double-blind, placebo-controlled

trials with add-on omega 3 fatty acid (notably EPA)
supplementation in schizophrenia have so far produced

positive results, whereas 4 of 6 such trials produced positive

effects in depression and bipolar disorders [32,37,121]. In

other words, LCPUFAs are likely to be involved in the

etiology of at least some psychiatric diseases, but also in

their presentation in terms of severity at later age.
8. Conclusions

Current research on the etiology of psychiatric disease

seems to fall short of the input of nutrition and may be

somewhat overdosed with genetics and the traditional search

for abnormal neurotransmitter metabolism per se. Folate,

other one-carbon metabolite micronutrients, and dietary

LCPUFA might play important roles in the etiology of at

least some psychiatric diseases in their capacity as

modulators of gene expression through epigenetic mecha-

nisms (folate) and, as brain structural components, precur-

sors of signal-transducing eicosanoids and ligands to

nuclear transcription factors (LCPUFA). Low status of

micronutrients involved in one-carbon metabolism and

low LCPUFA status are also likely to be factors in

psychiatric disease severity.
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